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ON THE FREE EXPANSION OF THREE-DIMENSIONAL STREAMS OF PERFECT GAS* 

Iu.B. LIFSHITS and N.A. MAREVTSEVA 

The asymptotic behavior of solutions of gasdynamics equations describingthedistant 
regions Of three-dimensional streams of inviscid and non-heat-conducting gas freely 
flowing into vacuum is studied. The same equations define the flows at initial sect- 
tiOnS Of streams flowing into region of small, but finite, pressure or in the ac- 
celeration sections of nozzles. The principal term of coordinate expansion of in- 
ciated solutions at large distances was obtained in /l- 5/. 

In this paper the expansion of solutions is constructed in the remote field in the small 
parameter that defines the deviation of particle velocity from the maximum possible. The 
second term Of that expansion enables the investigation of three-dimensional flows. Theobtain- 
ed formulas become in cases of axisymmetrie streams the expansion obtained in /6/. 

Let US Consider a stream of perfect gas freely flowing into vacuum along the .z axis in 

a cylindrical system of coordinates xrft. Let in some cross section at .x=x* of that 
stream the particle velocity components, total enthalpy and entropy be specified. The last 
two quantities are assumed constant in all cross sections normal to the I axis. The deter- 
mination of parameters of the stream is required for x>x,,. 

The stated Cauchy problem can be solved numerically, however, the coordinate expansion 
of the sought solution, as 5-+co, is of interest. The limit value of particles velocity 
when r = 00 is equal to the maximum possible velocity W,. 

In the case of a plane stream the problem is linearized in hodograph variables, and its 
solution follows from the expansion of Legendre potential in the neighborhood of point I+',. 
This procedure was used in /6/, where the powers of z in the coordinate expansion of plane 
stream parameters are indicated. In that paper they were found also for an axisymmetric 
problem on the assumption that V,lr= aV,iar in some neighborhood of the stream axis (r? is the 
radial velocity component). This assumption enabled the application of the hodograph trans- 
formation for linearizing the resulting equations. 

There exist another method, based on expansion in the small parameter E = max (1 - W/W,,,) 

of the solution /2.7/. In the first approximation it yields a stream with the velocity W,,, 
along the z axis. Equations of the next following approximation completely agree with the 
equations of unsteady flow in the rf) plane, if in them zlW,is substituLad for time. In the 
case of plane flow these equations are linearized in the hodograph plane and for the Legendre 
potential we obtain the Darboux-Tricomi equation /8/. If the exponent of the Poisson adia- 
batic curve x is such that the ratio (3 -X)/(X- 1) is an even number, the general integral of 
the Darboux-Tricomi equation is expressed explicitly /9/. It was applied in /3/ for solving 
the above Cauchy problem with x = 5/3 and '!g. 

In the case of three-dimensional streams the general integral of unsteady flows is not 
known. Hence the input Cauchy problem can only be solved numerically, even in the considered 
here approximation. However, there is an exact solution of equations that define the plane 
or axisymmetric flow from a source located as a point of the x axis, taken as the coordinate 
origin, and is approached by the solution of the respective Cauchy problem as x-+QQ /3/. 

That solution is, thus, the principal term of the sought ooordinate expansion. It maybe used 

for obtaining its subsequent terms. 
In accordance with what was said, we shall seek the flow potential at 5 2x2, in the form 

of an expansionin the small parameter E 

0 = w,s, [z + e@,, (2, P) + e*(D, (2, i,@ -t . ..I (1) 

2 = x/x0, 7 = e+*r/x, 

Henceforth we omit thebarover independent variables for the sake of simplicity. 
As Q,we take the source potential at the coordinate Origin 

*Prikl.Matem.Mekhan.,Vo1.47,No.3,pp.428-432,1983 

362 



CD1 = - & (x2- -q+& 2(m-I)=-((x-i)(v$l) 
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(2) 

where v = 0 is for plane and v = 1 for three-dimensional fiows. 
Equality (1) assumes, in fact, the existence of such so for which WIW, = 1 -E i-O(ea), 

VT/W,,, = &‘/I + 0 (El/‘) am3 b’+,lW, = 0 (E"'). When this assumption is fulfilled, the analysis of 
a, shows the validity of the indicated above statement on the tendency of the Cauchy problem 
to the solution of the prcblem of source as Z--SW. These relations become invalid when the 

stream boundary, where W = W,,, is approached, hence, the results obtained subsequently per- 
tain to the stream kernel and not to its peripheral region. 

The determination of the third term in formula (1) is of interest in connection with that 
the singularities of the three-dimensional flow at considerable distances can only be studied 
using a'?. Moreover, the analysis carried out in /6/ shows that a)* contains terms whose taking 
into account effectively widens the region of applicability of representation (1) in compar- 
ison with its two-term analog. 

To derive an equation which would satisfy @(+,~,a) we substitute formulas (1) and (2) 
into the equation of continuity and into the Bernoulli equation. After simple, but fairly 
unwieldy operations, we obtain for @'z the linear inhomogeneous equation 

V;1 _(.& + +_) p--1) (2 + $ $q] + (3) 
2 (,n - 1) 

that has the particular solution 

a'21 = - 2(4m - 3) 
2x+$ (,,1-s_1)-& 

The derivatives of @'aI decrease with increasing z more rapidly than the respective deri- 
vatives of ol. However, for the complete analysis it is necessary to construct the general 
solution ocO of the homogeneous equation. We carry out in (3) the substitution of the in- 
dependent variables 

z = X+-l), E = (v + 1)(x - lpr/x (5) 

In new variables the homogeneous equation for @,, has the simple form 

(6) 

which is hyperbolic. However on plane z = 0 it becomes degenerate. In the physical space 
this-plane according to (5) corresponds to infinity in the direction of the x axis, subsequ- 
ently it is convenient to consider the Laplacian in the right-hand side of Eq.(6) incartesian 
coordinates 

E, = gcos6, f, = Esin6 

The equation of the characteristic conoid with the apex at point (z,, En,, && has the 
form 

22’79 - [(El - E,,)’ + (5, - &.o)*l’/’ = 220’19 (7) 

It cuts out in the original plane a=1 a circle with its center at point (El,,, Eeo) and 
radius 2 (1 - z,'l*). 

Let us find the solution of the Cauchy problem for Eq.(6) with data in the plane z=l 

@)lo = 'p (519 5& aQ,;ar = II; (El, t) (8) 

We use for this the Fourier method. The two functions 

TI = za’*Jt4 (2pWexp [i (p,E, + p3t3)1 
T, = zaiaJ’l,j (2pz'l*)exp Ii (p,& + p2&.)] 

p' = p12 + pz? 
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where J and Yare Bessel functions of the first and second kind, satisfy Eq.(6). Hence the 
sought may be represented in the form of the integral 

Functions A ad Bare calculated using initial conditions (8), in which al1 quantities 
must be, as a prelininsry, replaced by their Fourier representations. After the substitution 
of A and Bin formula (9) , it represents the solution of problem (6), (8) in tie form of a 
fourfold integral. It is necessary to change the order of integration and calculate the in- 
ternal integrals. As the result, we obtain the sought formula 

0 

0ae0=z=12 1 K,(lal,z,q) [Q&,Et,rl)i (10) 

(v-l)a 

+(Ial- a)Gv(L Ea, rl)l ll”dll + 
a 

~wl+w/e & 
s 

zb-PllI~& (I a ( - l,z, 4 Gv (L Ee, II) v dq 
(V-IM 

a = 2 (1 - 2’13 

where r(a) denotes the gamma function and F(a,b; c; 5) the hypergeometric Gauss function. 
Functions Q,, and Gv are obtained from initial data (8). In the case of v = 0 we use 

for this a simple displacement 

00 = IP (~5 + rl), Go = cp (f + 4 

When the flow is three-dimensional (v = I), for calculating Q1 and GI in addition to 
the displacement a supplementary averaging over the angular coordinate is required 

The limits of integration in formula (10) are selected in accordance with the equation 
of characteristics (7) so that in the calculation of the potential 0'?0 at point (2, 51, &) only 
the initial data belonging to the circle in plane z = 1 with the center at point (El,&) and 
radius 2(1 - z'/f) participated. 

When flapproaches zero or a negative integer, the expression for the kernel K,(fi,z,q) 

becomes indeterminate. The indeterminacy is to be opened using the standard passingtolimit 
in each remainder of terms of hypergeometric series. Then terms with lnc, appear, which are 
the source of logarithmic dependence on I of the potential and its derivatives /6/. In the 
three-dimensional case for the indicated values of fi, logarithms do not occur in the kernel 

K, (8,z, 70. They, however, appear in the final calculation of 0*,, using formula (lo). 
For analyzing the behavior of 0,,(z, E-6) as z--t 0 we pass in formula (10) to integra- 

tion with respect to 5, and use the representation of kernels K, and KO for small 5. Assum- 

ing the analyticity of functions Qv and Gv with respect to argument 11, after simple trans- 
formations, we come to the conclusion that the derivatives of 0, as r-00, approach zero 

not slower than the respective derivatives of 0,. Note, however, that the first term in 

formula (2) for 0, taken with an arbitrary multiplier, is a particular solution of (6). Hence 

it is possible to OVerdeterInine E so that 020 did not contain a term proportional to xem-l. 

Then & changes by the quantitiy G(E*), and the form of (1) remains unchanged. But now the 

derivatives of OD, approach zero mor rapidly as X-+00, than the respective derivatives of 0,. 



From this follows the validity of the indicated above principle on the asymptotics 
tion of the Cauchy problem. 

of solu- 

The coordinate expansion of velocity components on the 5 axis is of interest. 
tained by the described method which yields the formulas 

It is ob- 

When m = l,‘p the coefficient a = 0 (G), and in @,, appear logarithmic terms. Accord- 

ingly the terms with coefficients 6. 'L and C, in the expression of velocity components of the 
I axis must be replaced by logarithmic formulas 

C,s'"lns, C,r-llns 

All this conforms to results of /6/. 
The coordinate expansion of @)oO can be constructed using a different method by searching 

self-similar solutions of Eq.(6) of the form 
(&J = ZVhh (~z-'/~)cosMt 
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For 1~~ we obtain linear ordinary differential equations dependent on parameter y. The 
parameter is determined from the condition of boundedness of derivatives of Q,,,,when E_ = 0. 
Solution of these equations is of power form, and is not adduced here. 

Let us consider the behavior of streamlines in the stream. Restricting the representa- 
tion of potential (1) to the first two terms, they are straight lines r = lpox, 8 = ‘PO, where 
$0 and 'pO are constant. The trinomial expansion of the potential yields the equalities. 

r = %x 11 + eR (5, Eo, %)I, 6 = 'pO + ET (x, Eo, IpO) (11) 
j,=(v$-1)(%-1)‘~~:0 

R=’ 40 
2 (m - 1) x2(m-‘) + 2 (“L - 1) 

@Jb s I T ED, rc,z-a dz 

T= 1 
Z(m-j)(Po" 

Since R and T do not increase in absolute value as x-+00, the expansions (11) are valid 
in the considered here flow region. When m = 'lz the second term in the formula for the 
coordinate r of particle trajectory approaches infinity as x is increased, i.e. the particle 
deviated from rectilinear trajectory r = qOx at an infinitely large distance /6/. But this 
does not lead to an increase of the relative width of the perturbed region, hence the singular- 
ity in the asymptotic expansion does not occur. Note that in the problem of demping shock 
waves at large distances from bodies in a supersonic gas flow, the second term of the asym- 
ptotic expansion, while remaining considerably smaller than the principal term, leads to an 
infinite increase of the perturbed region relative width. This effect, called cumulative, is 
the cause of singularity in the asymptotic expansion that is eliminated, for instance, by the 
method of deformed coordinates. 
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